Multiscale Enrichment based on Partition of Unity

نویسنده

  • Jacob Fish
چکیده

A new Multiscale Enrichment method based on the Partition of Unity (MEPU) method is presented. It is a synthesis of mathematical homogenization theory and the Partition of Unity method. Its primary objective is to extend the range of applicability of mathematical homogenization theory to problems where scale separation may not be possible. MEPU is perfectly suited for enriching the coarse scale continuum descriptions (PDEs) with fine scale features and the quasi-continuum formulations with relevant atomistic data. Numerical results show that it provides a considerable improvement over classical mathematical homogenization theory and quasi-continuum formulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Enrichment based on Partition of Unity for Nonperiodic Fields and Nonlinear Problems

We present a generalization of the Multiscale Enrichment based on Partition of Unity (MEPU) formulation originally reported in [1] to account for boundary layers, nonperiodic fields and nonlinear systems. MEPU is aimed at extending the range of applicability of the mathematical homogenization theory to nonlinear nonperiodic systems with inseparable fine and coarse scales. Performance studies fo...

متن کامل

A Parallel Variational Multiscale Method for Incompressible Flows Based on the Partition of Unity

A parallel variational multiscale method based on the partition of unity is proposed for incompressible flows in this paper. Based on two-grid method, this algorithm localizes the global residual problem of variational multiscale method into a series of local linearized residual problems. To decrease the undesirable effect of the artificial homogeneous Dirichlet boundary condition of local sub-...

متن کامل

Meshless Methods and Partition of Unity Finite Elements

In this paper, meshless methods and partition of unity based finite element methods are reviewed. In meshless methods, the approximation is built without the explicit connectivity information between the nodes; moving-least squares approximants and natural neighbor-based interpolants are discussed. The enrichment of the finite element approximation through the partition of unity framework is de...

متن کامل

Singularity enrichment for complete sliding contact using the partition of unity finite element method

In this paper, the numerical modelling of complete sliding contact and its associated singularity is carried out using the partition of unity finite element method. Sliding interfaces in engineering components lead to crack nucleation and growth in the vicinity of the contact zone. To accurately capture the singular stress field at the contact corner, we use the partition of unity framework to ...

متن کامل

Multiscale Partition of Unity

We introduce a new Partition of Unity Method for the numerical homogenization of elliptic partial differential equations with arbitrarily rough coefficients. We do not restrict to a particular ansatz space or the existence of a finite element mesh. The method modifies a given partition of unity such that optimal convergence is achieved independent of oscillation or discontinuities of the diffus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004